
Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

1The Parallel Universe

Mike Croucher, Developer Advocate, Numerical Algorithms Group (NAG)

For a long time now, the route to increased performance has been via parallelization. Vectorization,

threads, MPI*, OpenMP*, GPUs, FPGAs, and dozens more hardware and software technologies promise to

give you the performance you and your users crave. So you choose a set of technologies, embark on your

code optimisation journey, and realize some fantastic speedups that your users eagerly consume. The

success stories roll in and you sit back, content that the community is now using your product to solve

bigger and more advanced problems than anyone ever considered feasible. All is going well.

Pursuing the Never-Ending Quest for Performance

The Performance oPTimisaTion and
ProducTiviTy (PoP) ProjecT

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

2The Parallel Universe

But the quest for improved performance is never over, and soon your users want you to perform the

speedup trick once again. The models they’re building are bigger and more complex than ever. And

the hardware they’re running them on has new vectorization tricks―and much higher core counts―

than you ever considered before. Your code base is huge, your budget limited, and all the low-hanging

fruit has been picked and devoured.

Where do you start applying your development efforts?

The PoP Project
The Performance Optimisation and Productivity (PoP) project is a European Union-funded,

international group of partners working to improve parallel software via several complementary

routes including:

 • Developing a general methodology that can be used to understand parallel performance

 • Developing open source tools that can be used to apply the PoP methodology

 • Creating a set of detailed case studies where PoP experts demonstrate these developments by
auditing and refactoring the code of academic and industrial clients (available for free for clients within
the EU).

The PoP methodology can be applied to a range of parallelization schemes and programming

languages. OpenMP and MPI in Fortran*, C, and C++ are the most popular, but PoP has also worked

on applications written in MATLAB*, Python*, and Perl*, among others.

The PoP Methodology
Traditionally, there are several things we can try to gather intelligence about our application, such as

scaling experiments, profiling, and tracing using products like Intel® VTune™ Amplifier or the open-

source tools developed by some PoP partners. These can result in a huge amount of data to sift

through, containing everything from instruction counters to cache misses. It can be difficult to move

from this sea of information to the kind of insights that would really help a code developer determine

the most appropriate direction to follow to improve the code.

The PoP methodology distills this sea of data into a small hierarchy of metrics that measure

the relative impact of the different factors inherent in parallelization. Each metric is a measure of

efficiency between 0 and 1, where higher numbers are better. As a rule of thumb, PoP considers

anything below 0.8 as worthy of further attention.

A case study can help us understand these metrics.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://pop-coe.eu/
https://software.intel.com/en-us/vtune
https://sharepoint.ecampus.rwth-aachen.de/units/rz/HPC/public/Shared Documents/Metrics.pdf

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

3The Parallel Universe

The PoP Metrics and zCFD*

One of the PoP partners, The Numerical Algorithms Group (NAG), recently worked on the

commercial computational fluid dynamics solver zCFD*, developed by Zenotech. By generating

the PoP metrics from Intel VTune Amplifier data and collaborating with the original developers, NAG

helped improve the runtime of one particular simulation by 3x.

The first step in the audit was to limit the collection of Intel VTune Amplifier data to only the region of

interest (RoI). zCFD uses a Python package (zCFD-driver*) that calls computational kernels written in

C++. As such, the team used the NERSC Python VTune Instrumentation and Tracing Technology
(ITT) API bindings to disable tracing outside the RoI.

Once the Intel VTune Amplifier data was collected for simulation runs on varying numbers of cores,

the first set of PoP metrics could be computed (Table 1). (How to compute the PoP metrics from

Intel VTune Amplifier data is outside the scope of this article. For details, see the PoP webinar on
this case study. An alternative method is described in the article Automatic Calculation of PoP
Metrics Using Scalasca.)

Threads 1 2 4 6 8 10 12
Global
Efficiency 0.97 0.71 0.66 0.52 0.55 0.49 0.33

Parallel
Efficiency 0.97 0.80 0.77 0.64 0.67 0.60 0.50

Computational
Efficiency 1.00 0.89 0.85 0.82 0.82 0.82 0.66

Table 1. PoP metrics

The headline figure is global efficiency, which is the product of the parallel and computational efficiencies.

Parallel efficiency measures the effect that parallelizing the code has on the runtime. This includes the

impact of factors such as:
 • How well-balanced the computational load is between threads

 • How much time is lost to parallel overheads

It’s calculated as the ratio between the average amount of time that threads spend in useful computation

and the total runtime of the application.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://www.nag.com/
https://zenotech.com/zcfd-zenotech-computational-fluid-dynamics/
https://github.com/zCFD/zCFD-driver
https://github.com/NERSC/itt-python
https://github.com/NERSC/itt-python
https://pop-coe.eu/blog/8th-pop-webinar-pop-case-study-3x-speed-improvement-for-zenotechs-zcfd-solver
https://pop-coe.eu/blog/8th-pop-webinar-pop-case-study-3x-speed-improvement-for-zenotechs-zcfd-solver
https://pop-coe.eu/blog/automatic-calculation-of-pop-metrics-using-scalasca
https://pop-coe.eu/blog/automatic-calculation-of-pop-metrics-using-scalasca

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

4The Parallel Universe

Computational efficiency describes how well the computational load of the application scales with the

number of threads. It’s the ratio between the total time across all threads that the code spends in useful

computation and the time the serial code spends in useful computation.

We observe that there’s a general decline in global efficiency as the number of threads increases. This

is largely driven by a corresponding decline in parallel efficiency. The computational efficiency doesn’t

decline as much, except on 12 threads.

Taken together, these efficiencies suggest that the prime opportunity for improvement lies in the way

work is divided among threads rather than the computations each thread performs. For example, on 10

threads, the computational efficiency of 0.82 denotes that there’s the potential to improve runtime by

18% if issues associated with computation are addressed―compared with a potential 44% improvement

from addressing parallelization issues that the parallel efficiency of 0.56 suggests. With that said, there’s

something very strange going on with computational efficiency at 12 cores.

Parallel Efficiency
Now that we understand that focusing on parallel efficiency should give us the most gains, we can dive

deeper to try to understand why it’s so poor. A straightforward metric we can obtain from Intel VTune

Amplifier is the percentage of runtime spent in serial sections of code (Table 2).

Threads 1 2 4 6 8 10 12
Percentage
of Runtime in
Serial

— 88.6 84.6 75.0 74.2 70.1 66.6

Table 2. Runtime in serial code

By the time we reach 12 cores, 33% of our runtime is spent in serial code sections. Further investigation

determines there was a region the developers had attempted to parallelize, but that was actually still

running sequentially. Some refactoring corrected this.

Load balance efficiency (Table 3) shows that work is spread unevenly across threads.

Threads 1 2 4 6 8 10 12
Load Balance
Efficiency 1.00 0.88 0.89 0.85 0.89 0.86 0.85

Table 3. Load balance efficiency

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

5The Parallel Universe

Further investigation shows that the main load imbalance occurred in a region of code that called the

pow() function. This was hitting a slow code path. Because both the base and the exponent were

close to 1, pow() was computing the result to high accuracy, which took a lot of time. But this level of

accuracy was not needed by the computation. This was resolved by scaling the base, raising it to the

power, and then undoing the scaling1:

The two calls to pow() can be computed at the same time using vectorization, so this change only

incurred the cost of a single extra divide.

 Computational Efficiency
Although the metrics showed us that computational efficiency isn’t as important as parallel efficiency

for this particular problem, there’s something very strange going on when we move from 10 to 12

cores that warrants a closer look. We might hope it’s something straightforward that we can easily fix.

Happily, this is the case.

There are three submetrics that make up computational efficiency (Table 4):
1. Instructions per cycle (IPC) efficiency

2. Instructions efficiency

3. CPU frequency efficiency

Instruction efficiency is the ratio of the total number of useful instructions for a reference case

(e.g., one processor) compared to values when increasing the numbers of processes. A decrease in

instruction efficiency corresponds to an increase in the total number of instructions required to solve a

computational problem.

IPC efficiency compares IPC to the reference, where lower values indicate that the rate of computation

has slowed. Typical causes for this include decreasing cache hit rate and exhaustion of memory

bandwidth, which can leave processes stalled and waiting for data.

CPU frequency efficiency looks at how clock speed changes as the number of threads increases.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://stackoverflow.com/questions/9272155/replacing-extrordinarily-slow-pow-function/

Sign up for future issuesFor more complete information about compiler optimizations, see our Optimization Notice.

6The Parallel Universe

Threads 1 2 4 6 8 10 12
IPC Efficiency 1.00 0.94 0.93 0.92 0.91 0.90 0.91
Instructions
Efficiency 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CPU Frequency
Efficiency 1.00 0.94 0.91 0.89 0.90 0.91 0.72

Table 4. Submetrics that make up computational efficiency

There’s nothing much of interest going on with the IPC and instructions efficiencies, but the CPU

frequency drops sharply going from 10 to 12 cores.

Zenotech determined that the CPU frequency governor was set to on-demand by default on the

machine used for the audit, and that this was responsible for the drop in operating frequency. Adding

--cpu-freq=performance to the Slurm* commands resolved the issue by instructing the CPU to

run at its base frequency even when fully populated with threads.

 Results
Guided by these metrics, the developers of zCFD made the changes to the code and compute

environment described above (along with a few more that we don’t have the space to describe here).

Recalculating the metrics on the new code resulted in the efficiencies shown in Table 5.

Threads 1 2 6 12
Global Efficiency 1.00 0.89 0.73 0.56
Parallel Efficiency 1.00 0.98 0.89 0.76
Computational Efficiency 1.00 0.91 0.82 0.74

Table 5. Efficiencies

We see across-the-board improvements comparing Table 5 to Table 1. And when Zenotech ran the

new code on a much larger problem, they observed speedups of up to 3x compared to the original

code. Even with this success, the metrics suggest there might be yet more room for improvement. The

quest continues.

Applying for a PoP Code Audit
The PoP Project provides performance optimization and productivity services for academic and
industrial code in all domains. They offer a portfolio of services designed to help users optimize
parallel software and understand performance issues. The services are free of charge to academic,
research, or commercial organisations in the EU. You’re invited to apply for PoP time via the website.

https://software.seek.intel.com/parallel-universe-magazine
https://software.intel.com/articles/optimization-notice#opt-en
https://pop-coe.eu/request-service-form

