
N
et

w
o

rk
W

o
rl

d
.c

o
m

FROM IDG

T H E C O N N E C T E D E N T E R P R I S E
I N S I D E R E X C L U S I V E

Hone your diagnostic skills
for handline Linux issues with
this essential guide

FROM IDG

T H E C O N N E C T E D E N T E R P R I S E
I N S I D E R E X C L U S I V E

INVALUABLE TIPS
 + TRICKS
 FOR TROUBLESHOOTING

LINUX

http://www.networkworld.com
http://www.networkworld.com

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 2

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

TROUBLESHOOTING ANYTHING comes with
its own set of challenges, and in the case of
Linux and Unix, it’s helpful to have a practi-
cal guide to the tools available to make the
job easier. This is such a guide to introduce
Linux/Unix admins to some essential com-
mands that can make their lives easier when
problems crop up.

The “list open files” or lsof
command sounds straightfor-
ward enough, but its use as a
troubleshooting tool may not

be as apparent. For example, if an unknown
process has a number of files open, knowing
w which ones they are can help determine
whether the process is legitimate.

The first article in this guide explains
many options for using lsof, so many, in
fact that we’ve include a second article with
recommendations on how to keep them all
straight. This cheat sheet recommends some
aliases for the commands and a framework
that you might use to create more.

A less technical checklist of questions to
ask yourself when diagnosing problems is
the subject of our third article. These will
help impose some order on the chaos that
some problems create.

Dealing with Oracle databases is a
common admin task, and knowing a bit
about them and how to test connections to
them is valuable tool described in the fourth
article. If the connection is the problem, this
can rescue you from calling in the database
admin.

We round out our guide with instruction
on the commands needed to manage and
partition disks that first offers a primer on
how disks work and the fundamentals of
disk management.

Enjoy! u

TIM GREENE, executive editor, Network World

Editor’s
NOTE

INSIDE
Unix Commands:
Troubleshooting
with Lsof 3

Making
Troubleshooting
with Lsof Easier 11

When Your
System Breaks:
Unix Troubleshooting
Basics 14

Troubleshooting
Oracle Connections 16

Linux Commands
for Managing,
Partitioning,
Troubleshooting 20

SANDRA HENRY-STOCKER
has been administering
Unix systems for more than
30 years. You can contact

her at bugfarm@gmail.com.

mailto:bugfarm%40gmail.com?subject=

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 3

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

I
F YOU’VE NEVER USED the lsof command or used it only for one specific
purpose, you might be delighted to learn how many ways the lsof (list open files)
command can help you manage your servers. lsof is the Unix/Linux command
that allows you to list open files or identify the processes that particular files
have open. Handy for evaluating system security as well as troubleshooting, lsof
features a large range of options that allow it to be used in numerous ways —

sometimes even surpassing the ps command for looking at processes and the netstat
command for examining network interfaces.

What are open files?
For starters, let’s consider what open files are and why you might be curious about
them. Open files are files that some process is using. That process might be a command
that you are running or an application that is running on a server you manage. The
open files might include data files and libraries that supply shared routines. Many

There’s more to the lsof command than you might imagine. Check out all the ways
that it can be used to help you with your troubleshooting. BY SANDRA HENRY-STOCKER

UNIX COMMANDS:
TROUBLESHOOTING

LSOFW
ITH

To comment on
this story, visit
Network World’s
Facebook page.

https://www.facebook.com/NetworkWorld/

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 4

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

files are opened every time you log in. You might be surprised at how many. If you’re
curious about how many files you have open right now, try this command:

$ lsof -u ̀ whoamì | wc -1

55

And, if you’ve ever heard anyone say that for Unix, everything is a file, you might not
be too surprised to learn that lsof works with things — like network interfaces — that
most of us don’t generally think of as files.

Why do you care?
Sometimes you might want to know about open files because you try to remove a file and
discover that it’s in use. Maybe it’s filling up your disk space like a desperate shopper at a
dollar store. You want to know what process has the file open so that you can stop it and
empty the file. At other times, you might want to know what some suspicious process is
doing, and examining the files that it has open can provide valuable information.

How does lsof work?
When used without options, lsof lists all files that are open (in use) on your system. If you
run the lsof as yourself, you will get a long listing, but the output will include a lot of per-
mission denied messages – many representing open files in the /proc file system that you’re
not allowed to see. Run the command as root and you’ll see more output and all the data.

NOTE: The command output below (as well as the output for most of the commands shown
in this post) has been truncated to keep this post from turning into a virtual ebook. The ellipsis (…)
at the end of each patch of output is meant to indicate where output was omitted.

$ lsof

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

init 1 root cwd unknown /proc/1/cwd (readlink: Permission denied)

init 1 root rtd unknown /proc/1/root (readlink: Permission denied)

init 1 root txt unknown /proc/1/exe (readlink: Permission denied)

...

$ sudo lsof

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

init 1 root cwd DIR 202,1 4096 2 /

init 1 root rtd DIR 202,1 4096 2 /

init 1 root txt REG 202,1 150360 397362 /sbin/init

init 1 root DEL REG 202,1 396485 /lib64/libnss_files-2.17.so

...

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 5

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

What else is there?
A quick glimpse at the rather length lsof man page will show you that we’ve
only skimmed the surface. The lsof command has an extensive list of options.

 lsof [-?abChlnNOPRtUvVX] [-A A] [-c c] [+c c] [+|-d d] [+|-D

 D] [+|-e s] [+|-f [cfgGn]] [-F [f]] [-g [s]] [-i [i]] [-k k

] [+|-L [1]] [+|-m m] [+|-M] [-o [o]] [-p s] [+|-r

 [t[m<fmt>]]] [-s [p:s]] [-S [t]] [-T [t]] [-u s] [+|-w] [-x

 [fl]] [-z [z]] [-Z [Z]] [—] [names]

We’re only going to look at some of the more useful ones in this post.
To get started with all of these options, you should know that, if you use

more than one, they get ORed together. In other words, you get a listing that
combines the results of the options you specified. You can choose instead
to use an option which ANDs your specifications together. In other words,
you will see only the files or processes, etc. that match all of the options
you specify. To use the AND option, add the -a option (there’s an example
command below) to your command.

For a quick review of the implications of AND and OR, if you ask a
programmer for a peanut butter AND jelly sandwich, you’ll probably end
up with just two slices of bread — because the toppings can’t be both peanut
butter and jelly at the same time. The logic goes something like this: if
INGREDIENT = “peanut butter” AND INGREDIENT = “jelly”, SANDWICH-
TOPPINGS = NULL.

Helpful lsof commands
The sample lsof commands below help illustrate some of the more useful
things that you can do with the command. Again, most of the output is
truncated to keep the length of this post reasonable.

n The sample lsof command below will list all processes
that have a particular file open:

$ sudo lsof /lib64/libcrypto.so.1.0.1k

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

ntpd 2148 ntp mem REG 202,1 1971624 399258 /lib64/libcrypto.so.1.0.1k

sendmail 2163 root mem REG 202,1 1971624 399258 /lib64/libcrypto.so.1.0.1k

sendmail 2170 smmsp mem REG 202,1 1971624 399258 /lib64/libcrypto.so.1.0.1k

sshd 13774 root mem REG 202,1 1971624 399258 /lib64/libcrypto.so.1.0.1k

sshd 13776 froggy mem REG 202,1 1971624 399258 /lib64/libcrypto.so.1.0.1k

sshd 22551 root mem REG 202,1 1971624 399258 /lib64/libcrypto.so.1.0.1k

...

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 6

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

n This command will list all processes that have files within a particular directory open:

$ sudo lsof +D /lib64 | more

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

init 1 root mem REG 202,1 89312 396417 /lib64/libgcc_s-4.8.2-20140120.so.1

init 1 root mem REG 202,1 283184 397017 /lib64/libdbus-1.so.3.7.4

init 1 root mem REG 202,1 39936 397358 /lib64/libnih-dbus.so.1.0.0

init 1 root mem REG 202,1 101992 397360 /lib64/libnih.so.1.0.0

dhclient 1848 root mem REG 202,1 18712 396864 /lib64/libcap-ng.so.0.0.0

auditd 1889 root mem REG 202,1 89312 396417 /lib64/libgcc_s-4.8.2-20140120.so.1

auditd 1889 root mem REG 202,1 13224 396979 /lib64/libkeyutils.so.1.5

…

n In this command, we look at files opened by bash:

$ sudo lsof -c bash | more

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

bash 17811 froggy cwd DIR 202,1 4096 410779 /home/froggy

bash 17811 froggy rtd DIR 202,1 4096 2 /

bash 17811 froggy txt REG 202,1 898032 396531 /bin/bash

bash 17811 froggy mem REG 202,1 106065056 410803 /usr/lib/locale/locale-archive

bash 17811 froggy mem REG 202,1 58288 396484 /lib64/libnss_files-2.17.so

bash 17811 froggy mem REG 202,1 2107600 396466 /lib64/libc-2.17.so

bash 17811 froggy mem REG 202,1 19512 396472 /lib64/libdl-2.17.so

bash 17811 froggy mem REG 202,1 135616 396516 /lib64/libtinfo.so.5.7

bash 17811 froggy mem REG 202,1 160240 396459 /lib64/ld-2.17.so

bash 17811 froggy mem REG 202,1 26254 1596 /usr/lib64/gconv/gconv-modules.cache

bash 17811 froggy 0u CHR 136,0 0t0 3 /dev/pts/0

bash 17811 froggy 1u CHR 136,0 0t0 3 /dev/pts/0

bash 17811 froggy 2u CHR 136,0 0t0 3 /dev/pts/0

bash 17811 froggy 255u CHR 136,0 0t0 3 /dev/pts/0

n Below, we do the same thing but use a substring instead of the full process name:

$ sudo lsof -c bas

$ sudo lsof -c bas

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

bash 17811 ec2-user cwd DIR 202,1 4096 410779 /home/froggy

bash 17811 ec2-user rtd DIR 202,1 4096 2 /

bash 17811 ec2-user txt REG 202,1 898032 396531 /bin/bash

bash 17811 ec2-user mem REG 202,1 106065056 410803 /usr/lib/locale

… /locale-archive

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 7

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

n Next, we list open files for a particular process ID:

$ sudo lsof -p 2178

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

crond 2178 root cwd DIR 202,1 4096 2 /

crond 2178 root rtd DIR 202,1 4096 2 /

crond 2178 root txt REG 202,1 64096 403907 /usr/sbin/crond

crond 2178 root DEL REG 202,1 396485 /lib64/libnss_files-2.17.so

crond 2178 root DEL REG 202,1 396511 /usr/lib/locale/locale-archive

crond 2178 root DEL REG 202,1 396467 /lib64/libc-2.17.so

crond 2178 root mem REG 202,1 113112 396681 /lib64/libaudit.so.1.0.0

crond 2178 root DEL REG 202,1 396473 /lib64/libdl-2.17.so

crond 2178 root mem REG 202,1 55928 398855 /lib64/libpam.so.0.83.1

crond 2178 root mem REG 202,1 126336 396609 /usr/lib64/libselinux.so.1

crond 2178 root DEL REG 202,1 396460 /lib64/ld-2.17.so

crond 2178 root 0u CHR 1,3 0t0 5422 /dev/null

crond 2178 root 1u CHR 1,3 0t0 5422 /dev/null

crond 2178 root 2u CHR 1,3 0t0 5422 /dev/null

crond 2178 root 3u REG 202,1 5 263404 /var/run/crond.pid

crond 2178 root 4u unix 0xffff88003d754980 0t0 9655 socket

crond 2178 root 5r 0000 0,9 0 5420 anon_inode

Using lsof to look at your network
n We can also use lsof to look at network connections:

$ sudo lsof -i

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

dhclient 1848 root 5u IPv4 8573 0t0 UDP *:bootpc

ntpd 2148 ntp 16u IPv4 9534 0t0 UDP *:ntp

ntpd 2148 ntp 17u IPv4 9538 0t0 UDP localhost:ntp

ntpd 2148 ntp 18u IPv4 9539 0t0 UDP 172.30.0.28:ntp

sendmail 2163 root 4u IPv4 9613 0t0 TCP localhost:smtp

 (LISTEN)

sshd 15350 root 3u IPv4 17247327 0t0 TCP 172.30.0.28:ssh>

 ip108.cable.shentel.net:37884

 (ESTABLISHED)

sshd 15352 ec2-user 3u IPv4 17247327 0t0 TCP 172.30.0.28:ssh>

 ip108.cable.shentel.net:37884

 (ESTABLISHED)

sshd 22551 root 3u IPv4 32640 0t0 TCP *:ssh (LISTEN)

sshd 22551 root 4u IPv6 32642 0t0 TCP *:ssh (LISTEN)

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 8

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

n We can look for listening ports or established connections.

$ sudo lsof -i -sTCP:LISTEN

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

sendmail 2163 root 4u IPv4 9613 0t0 TCP localhost:smtp (LISTEN)

sshd 22551 root 3u IPv4 32640 0t0 TCP *:ssh (LISTEN)

sshd 22551 root 4u IPv6 32642 0t0 TCP *:ssh (LISTEN)

$ sudo lsof -i -sTCP:ESTABLISHED

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

sshd 13060 root 3u IPv4 17234339 0t0 TCP 172.30.0.28:ssh->

 ip108.cable.shentel.net:37846 (ESTABLISHED)

sshd 13062 froggy 3u IPv4 17234339 0t0 TCP 172.30.0.28:ssh->

 ip108.cable.shentel.net:37846 (ESTABLISHED)

n View IPv6 traffic only

$ sudo lsof -i 6

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

sshd 22551 root 4u IPv6 32642 0t0 TCP *:ssh (LISTEN)

$ sudo lsof -iUDP

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

dhclient 1848 root 5u IPv4 8573 0t0 UDP *:bootpc

ntpd 2148 ntp 16u IPv4 9534 0t0 UDP *:ntp

ntpd 2148 ntp 17u IPv4 9538 0t0 UDP localhost:ntp

ntpd 2148 ntp 18u IPv4 9539 0t0 UDP 172.30.0.28:ntp

n Or we can look at network connections for one particular source.

$ sudo lsof -i@172.30.0.28

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

ntpd 2148 ntp 18u IPv4 9539 0t0 UDP 172.30.0.28:ntp

sshd 13060 root 3u IPv4 17234339 0t0 TCP 172.30.0.28:ssh->

 ip108.cable.shentel.net:37846 (ESTABLISHED)

sshd 13062 froggy 3u IPv4 17234339 0t0 TCP 172.30.0.28:ssh->

 ip108.cable.shentel.net:37846 (ESTABLISHED)

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 9

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

Looking at files by user

n This lsof command allows you to view open files for a particular user:

$ sudo lsof -u froggy

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

sshd 13062 froggy cwd DIR 202,1 4096 2 /

sshd 13062 froggy rtd DIR 202,1 4096 2 /

sshd 13062 froggy txt REG 202,1 617128 404007 /usr/sbin/sshd

sshd 13062 froggy DEL REG 0,4 17234382 /dev/zero

sshd 13062 froggy mem REG 202,1 18640 398879 /lib64/security/pam_limits.so

sshd 13062 froggy mem REG 202,1 10264 398877 /lib64/security/pam_keyinit.so

sshd 13062 froggy mem REG 202,1 10288 398882 /lib64/security/pam_loginuid.so

sshd 13062 froggy mem REG 202,1 18736 398894 /lib64/security/pam_selinux.so

sshd 13062 froggy mem REG 202,1 38976 398532 /usr/lib64/libcrack.so.2.8.1

sshd 13062 froggy mem REG 202,1 14456 398863 /lib64/security/pam_cracklib.so

...

n To view open files for all users except some particular user
(in this case, root), use a ^ sign:

$ sudo lsof -u ̂ root | more

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

dbus-daem 1935 dbus cwd DIR 202,1 4096 2 /

dbus-daem 1935 dbus rtd DIR 202,1 4096 2 /

dbus-daem 1935 dbus txt REG 202,1 403416 404014 /bin/dbus-daemon

n We can also do the same thing but only for one particular network connection.

$ sudo lsof -u ec2-user -i @172.30.0.28

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

ntpd 2148 ntp 18u IPv4 9539 0t0 UDP 172.30.0.28:ntp

sshd 15350 root 3u IPv4 17247327 0t0 TCP 172.30.0.28:ssh->

 ip108.cable.shentel.net:37884

 (ESTABLISHED)

sshd 15352 ec2-user cwd DIR 202,1 4096 2 /

sshd 15352 ec2-user rtd DIR 202,1 4096 2 /

sshd 15352 ec2-user txt REG 202,1 617128 404007 /usr/sbin/sshd

...

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 10

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

dbus-daem 1935 dbus DEL REG 202,1 396485 /lib64/libnss_files-2.17.so

dbus-daem 1935 dbus DEL REG 202,1 396473 /lib64/libdl-2.17.so

dbus-daem 1935 dbus DEL REG 202,1 396467 /lib64/libc-2.17.so

dbus-daem 1935 dbus DEL REG 202,1 396497 /lib64/librt-2.17.so

dbus-daem 1935 dbus DEL REG 202,1 396493 /lib64/libpthread-2.17.so

dbus-daem 1935 dbus mem REG 202,1 18712 396864 /lib64/libcap-ng.so.0.0.0

dbus-daem 1935 dbus mem REG 202,1 113112 396681 /lib64/libaudit.so.1.0.0

n List process IDs for processes being run by a particular user:

$ sudo lsof -t -u froggy

15352

15353

n Kill all processes belonging to a particular user:

$ sudo kill ̀ lsof -t -u froggy`

Switching to AND
n Use the -a option to AND your conditions together, keeping in mind that

this limits the output to only that which matches all specified conditions:

$ sudo lsof -i -a -p 2148

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

ntpd 2148 ntp 16u IPv4 9534 0t0 UDP *:ntp

ntpd 2148 ntp 17u IPv4 9538 0t0 UDP localhost:ntp

ntpd 2148 ntp 18u IPv4 9539 0t0 UDP 172.30.0.28:ntp

...

Wrap up
The lsof command is a lot more useful and versatile than many Unix
admins realize. It could come in handy for a lot of tasks that you’ve been
addressing in other ways. Try out some of these commands and let me
know which you like the most. And don’t forget to make your own peanut
butter and jelly sandwiches! u

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 11

I
N OUR LEAD STORY, we looked at a series of commands that used the lsof (list open
files) command to provide information that can help with troubleshooting on the
Unix systems you manage. Since lsof has such a huge collection of options, remem-
bering which option to use for what sometimes makes the command hard to use
as often or as effectively as you might like. So what we’re doing today is looking at

several ways to make the use of this very helpful tool a bit easier. We do that by creating
useful aliases, by providing something of a “cheat sheet,” and by deploying a number of
lsof options in a script that makes educated guesses about what you’re going after.

Using aliases
Both of the aliases below will list whatever files are open on your behalf when you are
logged in. I suspect that few sysadmins will want to type “showmyopenfiles.” It might
be less of a problem to remember the lsof option or print out a cheat sheet. On the other
hand, “showmine” would be somewhat ambiguous – my open files or my processes?

Note that most of these aliases require root privilege and assume that you have
sudo privileges.

alias showmyopenfiles=’sudo lsof -u ̀ whoamì ’

alias showmine=’sudo lsof -u ̀ whoamì ’

The lsof command
has so many
options that

you may not be
making good use
of it. Let’s look

at ways that
you can make it
work better for
you. BY SANDRA

HENRY-STOCKER

INVALUABLE TIPS
 + TRICKS
 FOR TROUBLESHOOTING

LINUX

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

Making Troubleshooting with Lsof Easier

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 12

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

Maybe “showfiles” ,“showmyfiles” or just “ofiles” would work better.

alias showfiles=’sudo lsof’

alias showmyfiles=’sudo lsof -u ̀ whoamì ’

alias ofiles=’sudo lsof -u ̀ whoamì ’

In the command shown below, we’re looking for the processes that have
opened /usr/sbin/lsof — the lsof command itself.

$ showfiles /usr/sbin/lsof

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME

lsof 27473 root txt REG 202,1 141048 407194 /usr/sbin/lsof

lsof 27474 root txt REG 202,1 141048 407194 /usr/sbin/lsof

Of course, getting overly clever with your aliases might make them harder
to use than just going with basic lsof commands. Another option is to create
aliases for the handful of options that you’re likely to use most of the time.

alias byuser=’sudo lsof -u’

alias bypid=’sudo lsof -p’

alias byfile=’sudo lsof’

alias byprogram=’sudo lsof -c’

Anyone using these aliases just has to remember to add the argument (user-
name, PID, etc.).

In a similar way, you can set up aliases that show information for your
network connections.

alias shownet=’sudo lsof -i’

alias showtcp=’sudo lsof -i tcp’

alias showudp=’sudo lsof -i udp’

Using a cheat sheet
Having a cheat sheet on hand with quick explanations of the lsof command’s
options can also help you take advantage of its many features without having
to memorize them. Simple explanations and sample commands seem to be
the most helpful. Here’s an example:

To comment on
this story, visit
Network World’s
Facebook page.

https://www.facebook.com/NetworkWorld/

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 13

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

What files are open? lsof

What process has a particular file open? lsof /path/to/the/file

What files in some directory are open? lsof +D /path/to/the/dir

What files does some user have open? lsof -u username

What files does a group of users have open? lsof -u user1,user2

What files are open by process name? lsof -c procname

What files are open by PID? lsof -p 123

What files are open by other PIDs? lsof -p ̂ 123

Show network activity lsof -i

What files are open by port? lsof -i :25

 lsof -i :smtp

List PIDs lsof -t

Show network activity for a user lsof -a -u username -i

Show socket use lsof -U

Show NFS activity lsof -N

Using a script
You can also simplify use of the lsof
command by creating a script. The
one to the left tries to determine what
you’re looking for by evaluating the ar-
gument that you provide. For example,
if you enter an IP address, it assumes
that you want to see network activ-
ity for that particular IP. Feel free to
modify it to better represent your own
troubleshooting focus.

The items in the case statement need
to be ordered in such a way that the more
restrictive choices come first (e.g., IP
addresses before numbers). This script
looks for IP addresses, numbers (which
it assumes are PIDs), strings (which it
first tries to identify as usernames, then
looks for a matching local file, and then
tries it as a port. If the argument starts
with a /, it assumes it’s a file.

Wrap Up
There are many ways to make routine
use of the lsof command easier
and more likely. I hope some of the
options presented in this article will
prove to be useful. u

#!/bin/bash

if [$# == 0]; then

 echo “USAGE: $0 <what>”

 echo “Example: $0 procid”

fi

case $1 in

 [0-9]*.[0-9]*.[0-9]*.[0-9]*) sudo lsof -i@$1;;

 [0-99999]*) lsof -p $1;;

 net) sudo lsof -i;;

 [a-z]*) who | grep $1;

 if [$? == 0]; then

 sudo lsof -u $1

 else

 if [-e $1]; then

 sudo lsof $1

 else

 sudo lsof -i :$1

 fi

 fi;;

 /*) if [-f $1]; then

 sudo lsof $1

 fi;;

 *) echo “Sorry — target not recognized”;;

esac

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 14

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

T H I N K S T O C K

G
ENERALLY NOT TAUGHT
in any formal classes,
troubleshooting is one of
the things that most of us

end up picking up the hard way.
How to proceed, where to look,
how to determine the root cause
of the problems that have crept
up — all of these are skills that we
generally develop over time.

The life cycle of a troubleshooting
session usually involves:

n detection — noticing that a
problem exists

n identification — getting a handle
on what the problem is

n analysis — determining what

caused the problem
n correction — fixing whatever

was wrong
n prevention — taking steps to

ensure the problem doesn’t
happen again

A systematic approach to
troubleshooting can help to more
quickly pinpoint the root cause of
a problem that breaks a server or
application. Here are some steps to
take and questions to ask yourself:

1 What just changed?
The most common first
reaction to something that

stops working is to ask “OK, so

what changed?” Looking into recent
changes is also the action most likely
to pay off if, in fact, some signifi-
cant change was just made. Look
for files, especially configuration
files, that might have been modified,
applications or packages that were
just added, services that were just
started, etc.

Don’t overlook the fact that many
system problems are slow to emerge
and looking for something that
just changed might not lead you
any closer to the cause of whatever
problem you’re grappling with.

Examples of things that go wrong
that are not tied to some change that
was just recently made include:

n slowly running out of disk space
n bumping into a configura-

tion flaw that simply never
got activated before because
certain conditions hadn’t
yet been met

2 What errors am I seeing?
Pay close attention to any
errors that are being dis-

played on the system console or in
your log files. Do those errors point
to any particular cause?

Have you seen errors like these
before? Do you see any evidence of
the same errors in older log files or
on other systems? What do online
searches tell you? No matter what
kind of problem you’ve run into,
you’re not likely to be the first sysad-
min who has run into them.

3 How is the system
or service behaving?
Looking into the symptoms

of the problem is also likely to pay
off. Is the system or service slow
or completely unusable? Maybe
only some people cannot log in.
Maybe only some functions are not

Questions sysadmins should ask and precautions
they should take when troubleshooting. BY SANDRA
HENRY-STOCKER

When Your System Breaks:
Unix Troubleshooting Basics

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 15

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

working. Noticing what works and
what doesn’t might help you focus
on what’s wrong.

4 How is this system
different than one that
is still working?

If you’re lucky enough to have
redundant systems and have a
chance to compare the one that isn’t
working with one that is, you may be
able to identify key differences that
can help lead to the cause.

5 What are the likely
break points?
Think about how the appli-

cation or service works and how/
where it is likely to have problems.
Does it rely on a configuration
file? Does it need to communicate
with other servers? Is a database
involved? Does it write to specific
log files? Does it involve multiple
processes? Can you easily deter-
mine whether all of the required
processes are running? If you
can, systematically eliminate the
potential causes.

6 What troubleshooting
tools do I have on hand
that might be helpful?

Think about the tools that you have
on hand for looking into system
problems. Some that might prove
useful include:

n top — for looking at perfor-
mance, including some memory,
swap space, and load issues

n df — for examining disk usage
n find — for locating files

that have been modified
in the last day or so

n tail -f — for viewing recent
log entries and watching to
see if errors are still arriving

n lsof — to determine what files

a particular process has open
n ping — quick network checking
n ifconfig — checking network

interfaces
n traceroute — checking connec-

tions to remote systems
n netstat — examining network

connections
n nslookup — checking

host resolutions
n route — verifying routing tables
n arp — checking IP address

to MAC address entries
in your cache

7 Is anything
nasty going on?
Don’t rule out the possibility

that someone has been messing with
your system, although most hackers
would prefer to do their work
without you noticing anything.

8 What should I NOT do?
Don’t confuse symptoms
and causes. Whenever you

identify a problem, ask yourself why
the problem exists.

Be careful not to destroy “evi-
dence” as you work feverishly to
get your system back online. Copy
log files to another system if you
need to recover disk space to get
the system back to an operational
state. Then you can examine them
later to help figure out what caused
the problems you’re working to
resolve. If you need to repair a con-
figuration file, first make a copy
of the file (e.g., cp -p config config.
save) so that you can more easily
look into how and when the file
was modified and what you had to
do to get things working.

Keep in mind that you might
end up making a lot of changes
in the process of tracking down
your problem. Later on, you might

want to think through which of
those changes actually resolved
the problem.

9 What SHOULD I do?
Record your actions. If
you’re using PuTTY to

connect (or some other tool that
allows you to record your system
interactions), turn on logging. This
will help you when you have to
review what happened and how you
got past the problem. If you’re not
out of disk space, you also have the
option of using the script command
to record your login session (e.g.,
script troubleshooting.`date
%m%d%y`).

If you can’t record, keep notes
on what you did and what you saw.
You might not remember it all later,
especially if you’re stressed. You
might remember the steps, but not
the order in which you ran them.

After the problem is resolved,
document what happened. You
might see it again, and you might
need to explain to your boss or your
customers what happened and how
you’re going to prevent it from hap-
pening in the future.

Whenever possible, think about
how the problem could be avoided
in the future. Can you improve
your monitoring services so that
disk space, memory and network
issues, configuration changes, etc.
are brought to your attention long
before they affect running services?

Wrap up
Good troubleshooting skills can
really save the day, and having
a plan of attack when a problem
arises can play a major role in
getting your systems and applica-
tions back online and you back
home at a decent hour. u

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 16

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

To comment on
this story, visit
Network World’s
Facebook page.

I
OFTEN FIND MYSELF needing to verify whether an Oracle database is working.
Sometimes a process running on one server extracts data from a database on
another server and, if the process fails, testing the connection to the database is
a good starting point from which to determine what went wrong. I don’t have
a lot of Oracle tricks up my sleeve, but a small amount of information about ac-
cessing Oracle goes a long way when troubleshooting potential problems.

Checking a Local Database
If the database is on the local system, I will check the process status and
expect to see output like that shown below.

boson$ ps -ef | grep oracle

 oracle 308 1 0 Oct 11 ? 3:35 ora_dbw0_ORCL

 oracle 338 1 0 Oct 11 ? 0:00 /opt/u01/app/oracle/product/8.1.6/bin

Troubleshooting Oracle Connections
When Oracle databases aren’t performing, it’s wise to check the connections to it.
Here’s how. BY SANDRA HENRY-STOCKER

https://www.facebook.com/NetworkWorld/

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 17

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

/tnslsnr LISTENER -inherit

 oracle 306 1 0 Oct 11 ? 0:03 ora_pmon_ORCL

 oracle 310 1 0 Oct 11 ? 1:12 ora_lgwr_ORCL

 oracle 312 1 0 Oct 11 ? 6:31 ora_ckpt_ORCL

 oracle 314 1 0 Oct 11 ? 0:21 ora_smon_ORCL

 oracle 316 1 0 Oct 11 ? 0:01 ora_reco_ORCL

 oracle 318 1 0 Oct 11 ? 0:14 ora_snp0_ORCL

 oracle 320 1 0 Oct 11 ? 0:14 ora_snp1_ORCL

 oracle 322 1 0 Oct 11 ? 0:15 ora_snp2_ORCL

 oracle 324 1 0 Oct 11 ? 0:15 ora_snp3_ORCL

 oracle 7388 1 0 Oct 21 ? 0:00 oracleORCL (DESCRIPTION=(LOCAL=no)

(ADDRESS=(PROTOCOL=BEQ)))

 oracle 908 1 0 Oct 11 ? 0:11 oracleORCL (DESCRIPTION=(LOCAL=no)

(ADDRESS=(PROTOCOL=BEQ)))

 oracle 7414 1 0 Dec 21 ? 0:23 oracleORCL (DESCRIPTION=(LOCAL=no)

(ADDRESS=(PROTOCOL=BEQ)))

This output tells me that the Oracle processes are running, including
tnslsnr, often referred to as “the listener” and critical for connections to be
made to the local database.

I might also check netstat output to see where there is a listen on the
port that Oracle uses by default. This is the port that the listener should
have opened.

boson$ netstat -a | grep 1521

 *.1521 *.* 0 0 0 0 LISTEN

boson.32806 boson.1521 32768 0 32768 0 ESTABLISHED

boson.1521 boson.32806 32768 0 32768 0 ESTABLISHED

localhost.32841 localhost.1521 32768 0 32768 0 ESTABLISHED

localhost.1521 localhost.32841 32768 0 32768 0 ESTABLISHED

boson.1521 10.9.1.13.32854 24820 0 8760 0 ESTABLISHED

boson.1521 10.9.1.13.32861 24820 0 8760 0 ESTABLISHED

Using tnsping
Another, potentially more useful command, is tnsping which uses in-
formation in Oracle’s tnsnames.ora file to test connectivity. If I type the
command “tnsping ORCL”, for example, the command will look for a
database with a service name of ORCL and will issue a ping-like request to
the configured port and report on the response. A successful response from
tnsping will look something like this:

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 18

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

$ tnsping ORCL

TNS Ping Utility for Solaris: Version 8.1.6.0.0 - Production on 29-DEC-2005

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Attempting to contact (ADDRESS=(PROTOCOL=TCP)(HOST=boson)(PORT=1521))

OK (11 msec)

Notice the “OK” response in the last line. I also get a report on how much time the re-
sponse took. Eleven seconds is a quick response. Were I checking on a distant system, I
wouldn’t be surprised if the response took ten or more times as long to get to me.

If Oracle is listening on a port other than 1521, the tnsping command will still work,
assuming that the tnsnames.ora file contains the correct information. A tnsnames.ora
entry for a single database will look something like this:

ORCL =

 (DESCRIPTION =

 (ADDRESS_LIST =

 (ADDRESS = (PROTOCOL = TCP)(HOST = boson)(PORT = 1521))

)

 (CONNECT_DATA =

 (SERVICE_NAME = ORCL)

)

)

Notice how the service name (ORCL) that I used in the example tnsping
command and the port on which the Oracle listener is responding (1521) are
both configured in this database descriptor.

Using sqlplus
The other command that I like to use to verify connectivity with an Oracle database is sqlplus.
With sqlplus (installed along with Oracle), I can both verify that Oracle is responding and I
can issue some sqlplus commands to verify that the tables or the content of tables match what
I expect to see. The sqlplus command takes this form to connect to an Oracle database:

sqlplus username/password@SID

The SID in this description might be the SID or the SERVICE_NAME, inter-
changeable in some versions of Oracle. For example, I might type:

% sqlplus admin/f0xtrawt@ORCL

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 19

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

This command specifies the username, password and SERVICE_NAME/SID
in a single command. Once connected, I might issue a couple sql commands to
verify that the database appears to be working correctly. I can count the number
of user tables with a command like this:

SQL> select count(*) from user_tables;

 COUNT(*)

 88

Creating a Script
Because I don’t troubleshoot Oracle databases all that often, I prefer to save the
commands for connecting to a particular database in a simple script. I might
call a script for connecting to the local database “connect2local” and a similar
script for connecting to a database on a remote server “connect2rem” or “con-
nect2mars” (if the remote system were named “mars”).

n To facilitate my use of Oracle, I will store the environment variables
that I want to use in a profile and source it as needed:

Oracle Settings

stty istrip

stty erase ̂ H

export ORACLE_BASE=/opt/oracle

export ORACLE_HOME=$ORACLE_BASE/product/8.1.6

export ORACLE_TERM=vt100

export PATH=$ORACLE_HOME/bin:/usr/ccs/bin:/bin:/usr/bin:/usr/local/bin:/usr/ucb

n The script that I put together will look like this:

#!/bin/bash

connect2local: connect to local db using sqlplus

. ~/oracle_profile

check connectivity to database

tnsping ORCL

sqlplus admin/f0xtrawt@ORCL

When I type “connect2local”, I will expect to see the OK response and be left
at the SQL> prompt from which I can issue queries or type “quit” to exit.

Quick tests to determine whether an Oracle database is responsive go a long
way in troubleshooting connection problems. u

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 20

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

T H I N K S T O C K

H
OW MUCH DO YOU NEED TO KNOW ABOUT DISKS to successfully
manage a Linux system? What commands do what? How do you make
good decisions about partitioning? What kind of troubleshooting tools
are available? What kind of problems might you run into? This article
covers a lot of territory – from looking into the basics of a Linux file
system to sampling some very useful commands.

Disk technology
In the beginning days of Unix and later Linux, disks were physically large, but very
small in terms of storage capacity. A 300 megabyte disk in the mid-90’s was the size of
a shoebox. Today, you can get multi-terrabyte disks that are the size of a slice of toast.

Traditionally, files resided within file systems that resided in disk partitions that
were themselves simply slices of disks. This organization still dominates today,
though servers in large data centers often take on an entirely different structure.

Managing Linux disks and the file systems that reside on them is something of an art —
from initial setup to monitoring performance. BY SANDRA HENRY-STOCKER

Linux Commands for Managing,
Partitioning, Troubleshooting

To comment on
this story, visit
Network World’s
Facebook page.

10100101010101010101001001
0010010101010100101010101
0101010101000100101011010
1010010101110101001010101
01001010101010101001010
0100101010101010100101
0101010101010010010010
010101010100101010101
01010101010001001010
110101010010101110101
0010101010100101010
1010101001010010010
10101010 101001010101
010101010010010010010
1010101001010101010101
0101010001001010110101
01001010111010100101010
101001010101010101001010
0100101010101010100101010
1010101010010010010010101
01010010101010101010101010

10100101010101010101001001
0010010101010100101010101
0101010101000100101011010
1010010101110101001010101
01001010101010101001010
01001010101010101001010
1010101010100100100100
1010101010010101010101
01010101000100101011
01010100101011101010
0101010101001010101
0101010010100100101

0101010 1010010101010
10101010010010010010

1010101001010101010101
0101010001001010110101

01001010111010100101010
101001010101010101001010

0100101010101010100101010
1010101010010010010010101

01010010101010101010101010

https://www.facebook.com/NetworkWorld/

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 21

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

This simplistic view still works for
many systems, but these days there
are lots of complexities that make disk
management harder in some ways and
easier in others. A file system might be
virtual — no longer residing on a single
disk and more complex to manage, but
far easier to resize as needed. In fact, the
entire system could be virtual. And what
we might manage as if it were a single
disk could actually be some portion of a
very large disk array.

Disk management
Sysadmins generally have to deal
with many issues when it comes to
managing disks.

These include:
n Partitioning disks
n Creating file systems
n Mounting file systems
n Sharing file systems
n Monitoring free space within file systems
n Backing up (and sometimes restoring) file systems

The reasons to partition a disk include:
n protecting some file systems from running out of space (e.g., you may want

the OS partition to be separated from home directories or applications
to keep it from being affected if users’ files begin to take up an excessive
amount of disk space)

n improving performance
n allocating swap space
n facilitating maintenance and backups (e.g., you might be able to unmount

/apps if it’s not part of / and you might want to back up /home more fre-
quently than /usr)

n more efficient (and targeted) fsck
n maintaining (particularly on test systems) multiple operating systems
n reserving enough disk space for file system expansion
n sharing select file systems with other systems

Partitioning commands
For most Linux servers, partitioning is done before the servers are deployed.
On the other hand, you might add disks at some later time or hold back some
significant amount of free disk space for future use.

To make changes or verify partitions, enter a command such as fdisk /dev/
sda to start fdisk interactively and then type m to see a list of the things that you
can do with the fdisk command.

DISK

DISK PARTITION

FILE SYSTEM

FILE

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 22

As you can see on the left, the fdisk command provides a lot of function-
ality. The partitions that you set up may look something like this configu-
ration in which four partitions have been set up on a single disk – /dev/sda.

sda

+------------------------+-----------------------------------+------------------------------+-------------------+

 | / 40G | /home 80G | /apps 70G | swap |

+------------------------+-----------------------------------+------------------------------+-------------------+

sda1 sda2 sda3 sda4

Examining disk space and disk partitions
There are a number of excellent commands for examining disk
partitions. The df command is one of the most commonly used
commands for reporting on disk space usage. With the -h option,
the df command displays the measurements in the most “human-
friendly” format and that is, in fact, what the “h” is meant to
imply. As you can see in the example below, the measurements are
displayed in kilobytes, megabytes or gigabytes depending on the
sizes rather than all using the same scale.

$ df -h

Filesystem Size Used Avail Use% Mounted on

udev 969M 4.0K 969M 1% /dev

tmpfs 196M 1.1M 195M 1% /run

/dev/sda1 37G 4.5G 31G 13% /

none 4.0K 0 4.0K 0% /sys/fs/cgroup

none 5.0M 0 5.0M 0% /run/lock

none 980M 152K 979M 1% /run/shm

none 100M 36K 100M 1% /run/user

/dev/sda3 28G 44M 26G 1% /apps

The pydf command (think “python df” as it’s really a python script) also
provides a very useful disk usage display showing mount points and cute little
illustrations for how full each partition is.

$ pydf

Filesystem Size Used Avail Use% Mounted on

/dev/sda1 37G 4534M 30G 12.1 [##...........] /

/dev/sda3 27G 44M 26G 0.2 [.............] /apps

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

$ sudo fdisk /dev/sda

Command (m for help): m

Command action

 a toggle a bootable flag

 b edit bsd disklabel

 c toggle the dos compatibility flag

 d delete a partition

 l list known partition types

 m print this menu

 n add a new partition

 o create a new empty DOS partition table

 p print the partition table

 q quit without saving changes

 s create a new empty Sun disklabel

 t change a partition’s system id

 u change display/entry units

 v verify the partition table

 w write table to disk and exit

 x extra functionality (experts only)

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 23

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

The parted command displays partition information in a different format:

$ sudo parted -1

Model: ATA WDC WD800AAJS-60 (scsi)

Disk /dev/sda: 80.0GB

Sector size (logical/physical): 512B/512B

Partition Table: msdos

Number Start End Size Type File system Flags

 1 1049kB 40.0GB 40.0GB primary ext4 boot

 2 40.0GB 50.0GB 10.0GB primary linux-swap(v1)

 3 50.0GB 80.0GB 30.0GB primary ext4

The lsblk (list block devices) command illustrates the relationship between disks
and their partitions graphically and also supplies the major and minor device
numbers and mount points.

$ lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 0 74.5G 0 disk

sda1 8:1 0 37.3G 0 part /

sda2 8:2 0 9.3G 0 part [SWAP]

sda3 8:3 0 28G 0 part /apps

The fdisk command reports more details on disk partitions and uses very
different numbers. You can also use fdisk to create or delete partitions, list
unpartitioned space, change a partition type or verify the partition table.

$ sudo fdisk -1

Disk /dev/sda: 80.0 GB, 80026361856 bytes

255 heads, 63 sectors/track, 9729 cylinders, total 156301488 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk identifier: 0x000f114b

Device Boot Start End Blocks Id System

/dev/sda1 * 2048 78125055 39061504 83 Linux

/dev/sda2 78125056 97656831 9765888 82 Linux swap / Solaris

/dev/sda3 97656832 156301311 29322240 83 Linux

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 24

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

The sfdisk command is similar to fdisk, but makes some partition
manipulation activities easier to perform.

$ sudo sfdisk -1 -uM

Disk /dev/sda: 9729 cylinders, 255 heads, 63 sectors/track

Units = mebibytes of 1048576 bytes, blocks of 1024 bytes, counting from 0

Device Boot Start End MiB #blocks Id System

/dev/sda1 * 1 38146 38146 39061504 83 Linux

/dev/sda2 38147 47683 9537 9765888 82 Linux swap / Solaris

/dev/sda3 47684 76318 28635 29322240 83 Linux

/dev/sda4 0 - 0 0 0 Empty

NOTE: A mebibyte (MiB) = 220 bytes or 1,048,576 bytes.

The cfdisk command can also be used to display or manipulate disk partitions.

$ sudo cfdisk

cfdisk (util-linux 2.20.1)

Disk Drive: /dev/sda

Size: 80026361856 bytes, 80.0 GB

Heads: 255 Sectors per Track: 63 Cylinders: 9729

Name Flags Part Type FS Type [Label] Size (MB)

 Pri/Log Free Space 1.05*

sda1 Boot Primary ext4 39998.99*

sda2 Primary swap 10000.27*

sda3 Primary ext4 30025.98*

 Pri/Log Free Space 0.10*

[Help] [New] [Print] [Quit] [Units] [Write]

Create new partition from free space

Monitoring disk performance
The iostat command can display statistics that illustrate how disks are perform-
ing, including how heavily they are being used. It also displays important
measurements that show how busy the CPU is and how much of its resources
are used for types of work. The system described below is idle more then 95% of

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 25

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

Probably one of the most informative commands for looking at disk health
is smartctl (part of smartmontools). While the command generates a lot of
output, it provides valuable measurements that might help you pinpoint disk
problems, particularly once you get used to working with its extensive output.

$ sudo smartctl -a /dev/sda1

smartctl 6.2 2013-07-26 r3841 [x86_64-linux-3.13.0-129-generic] (local build)

Copyright (C) 2002-13, Bruce Allen, Christian Franke, www.smartmontools.org

============================= START OF INFORMATION SECTION =============================

 Model Family: Western Digital Caviar Blue Serial ATA

 Device Model: WDC WD800AAJS-60M0A0

 Serial Number: WD-WMAV37134378

 LU WWN Device Id: 5 0014ee 0015c85ef

 Firmware Version: 02.03E02

 User Capacity: 80,026,361,856 bytes [80.0 GB]

 Sector Size: 512 bytes logical/physical

 Device is: In smartctl database [for details use: -P show]

 ATA Version is: ATA8-ACS (minor revision not indicated)

 SATA Version is: SATA 2.5, 3.0 Gb/s

 Local Time is: Thu Aug 31 15:30:19 2017 EDT

 SMART support is: Available - device has SMART capability.

 SMART support is: Enabled

the time. More importantly for our focus on disks, the %iowait (CPU waiting on
disk IO) is very low. This would not be true if the disk were unusually busy and
disk IO were a bottleneck.

$ iostat -x 60

Linux 3.13.0-129-generic (stinkbug) 08/31/2017 _x86_64_ (2 CPU)

avg-cpu: %user %nice %system %iowait %steal %idle

 0.93 1.15 0.35 1.86 0.00 95.73

Device: rrqm/s wrqm/s r/s w/s rkB/s wkB/s avgrq-sz avgqu-sz await r_await w_await svctm %util

sda 8.37 3.26 13.41 2.79 341.14 191.82 65.79 0.61 37.60 30.40 72.14 2.52 4.08

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 26

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

=========================== START OF READ SMART DATA SECTION ===========================

SMART overall-health self-assessment test result: PASSED

General SMART Values:

Offline data collection status: (0x82) Offline data collection activity

 was completed without error.

 Auto Offline Data Collection: Enabled.

Self-test execution status: (0) The previous self-test routine

 completed without error

 or no self-test has ever been run.

Total time to complete

offline data collection: (2700) seconds.

Offline data collection

capabilities: (0x5b) SMART execute Offline immediate.

 Auto Offline data collection on/off support.

 Suspend Offline collection upon new command.

 Offline surface scan supported.

 Self-test supported.

 No Conveyance Self-test supported.

 Selective Self-test supported.

SMART capabilities: (0x0003) Saves SMART data before entering

 power-saving mode.

 Supports SMART auto save timer.

Error logging capability: (0x01) Error logging supported.

 General Purpose Logging supported.

Short self-test routine

recommended polling time: (2) minutes.

Extended self-test routine

recommended polling time: (36) minutes.

SCT capabilities: (0x303f) SCT Status supported.

 SCT Error Recovery Control supported.

 SCT Feature Control supported.

 SCT Data Table supported.

W I N T E R 2 0 1 8 | N E T W O R K W O R L D 27

There are numerous other commands for examining disks and file systems. Those
described here are some of the most useful and informative. Using them periodically has ad-
vantages as the easiest way to spot problems is becoming so used to the output of commands
such as these that you easily spot the kind of differences that might indicate problems. u

SMART Error Log Version: 1

No Errors Logged

SMART Self-test log structure revision number 1

Num Test_Description Status Remaining LifeTime(hours) LBA_of_first_error

1 Short offline Completed without error 00% 30349 —

2 Extended offline Aborted by host 80% 0 —

SMART Selective self-test log data structure revision number 1

 SPAN MIN_LBA MAX_LBA CURRENT_TEST_STATUS

 1 0 0 Not_testing

 2 0 0 Not_testing

 3 0 0 Not_testing

 4 0 0 Not_testing

 5 0 0 Not_testing

Selective self-test flags (0x0):

After scanning selected spans, do NOT read-scan remainder of disk.

If Selective self-test is pending on power-up, resume after 0 minute delay.

SMART Attributes Data Structure revision number: 16

Vendor Specific SMART Attributes with Thresholds:

 ID# ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED WHEN_FAILED RAW_VALUE

 1 Raw_Read_Error_Rate 0x002f 200 200 051 Pre-fail Always — 0

 3 Spin_Up_Time 0x0027 143 140 021 Pre-fail Always — 3841

 4 Start_Stop_Count 0x0032 100 100 000 Old_age Always — 178

 5 Reallocated_Sector_Ct 0x0033 200 200 140 Pre-fail Always — 0

 7 Seek_Error_Rate 0x002f 100 253 051 Pre-fail Always — 0

 9 Power_On_Hours 0x0032 058 058 000 Old_age Always — 31203

 10 Spin_Retry_Count 0x0033 100 100 051 Pre-fail Always — 0

 11 Calibration_Retry_Count 0x0032 100 100 000 Old_age Always — 0

 12 Power_Cycle_Count 0x0032 100 100 000 Old_age Always — 175

 184 End-to-End_Error 0x0033 100 100 097 Pre-fail Always — 0

 187 Reported_Uncorrect 0x0032 100 100 000 Old_age Always — 0

 188 Command_Timeout 0x0032 100 100 000 Old_age Always — 0

 190 Airflow_Temperature_Cel 0x0022 066 062 040 Old_age Always — 34

 192 Power-Off_Retract_Count 0x0032 200 200 000 Old_age Always — 103

 193 Load_Cycle_Count 0x0032 200 200 000 Old_age Always — 178

 196 Reallocated_Event_Count 0x0032 200 200 000 Old_age Always — 0

 197 Current_Pending_Sector 0x0032 200 200 000 Old_age Always — 0

 198 Offline_Uncorrectable 0x0030 200 200 000 Old_age Offline — 0

 199 UDMA_CRC_Error_Count 0x0032 200 200 000 Old_age Always — 0

 200 Multi_Zone_Error_Rate 0x0008 200 200 000 Old_age Offline — 0

T R O U B L E S H O O T I N G L I N U X
I N S I D E R E X C L U S I V E

