
White Paper

How to Monetize Your Application
Technical Debt

A Data-Driven Approach to Balance
Delivery Agility with Business Risk

 While there are many ways to define and measure Technical Debt, one
thing is clear—it has been growing exponentially as maintenance
is starved and development teams are forced to cut corners to
meet increasingly unrealistic delivery schedules. CAST clearly
defines Technical Debt as the cost of fixing the structural quality
problems in an application that, if left unfixed, are highly likely to
cause major disruption and put the business at serious risk. Once
Technical Debt is measured, it can be juxtaposed with the business
value of applications to inform critical tradeoffs between delivery
agility and business risk.

How to Monetize Your Application Technical Debt
Page 2

Executive Summary

While there are many ways to define and measure Technical Debt, one
thing is clear—it has been growing exponentially as maintenance is starved
and development teams are forced to cut corners to meet increasingly
unrealistic delivery schedules.

In Measure and Manage Your IT Debt, Andy Kyte, Gartner VP and Fellow,
eloquently illustrates the systemic risk in the application portfolio caused
by the accumulation of Technical Debt over the last decade. Gartner
estimates that Fortune 2000 businesses and large public sector agencies
have an average IT debt of more than $200 million, so dealing with IT
debt must be a priority for the coming decade.

CAST clearly defines Technical Debt as the cost of fixing the structural
quality problems in an application that, if left unfixed, are highly likely to
cause major disruption and put the business at serious risk. CAST analysis
shows that even a conservative calculation of Technical Debt in the typical
business application tops $1 Million.

A fundamental element in the calculation of Technical Debt is a “violation”,
which occurs when an application fails to accord with one or more rules
of software engineering. Violations are the root causes of software cost
and risk; in other words, they are the fundamental metric of structural
quality. Putting a dollar figure on structural quality translates structural
quality into a language the business can understand. It enables apples-
to-apples comparisons with other monetized figures, driving informed
tradeoffs between Technical Debt, business value, and IT investment.

When should you measure Technical Debt? CAST recommends you make
it a part of the periodic review of your mission-critical applications.

1. Count and compare the number of structural quality violations once a
quarter. Establish an automated process to measure the structural
quality of an application.

2. Create an Acceptance Quality Gate as a threshold for accepting
any application before it is put into production, so you can clearly
communicate quality targets to internal teams and external service
providers.

3. Strengthen your systemic risk reduction processes. Integrate the
practice of measuring violations into your delivery model to remediate
risks before they increase your Technical Debt.

Once Technical Debt is measured, juxtapose it with the business value
of applications to inform critical tradeoffs between delivery agility and
business risk. Set the appropriate threshold for Technical Debt and monitor
critical applications against this threshold to keep the right balance
between agility and business risk as IT and business conditions evolve.

How to Monetize Your Application Technical Debt
Page 3

Contents

I. Introduction

II. The Definition of Technical
Debt and How It’s Calculated

III. Four Steps for Calculating
Technical Debt

IV. Setting a technical Debt
Threshold

V. From Monetization to Action—
Three Use Cases

VI. Conclusion

I. Introduction

In Measure and Manage Your IT Debt, Andy Kyte, Gartner VP and Fellow,
eloquently illustrates the systemic risk in the application portfolio caused
by the accumulation of Technical Debt over the last decade. Gartner
estimates that Fortune 2000 businesses and large public sector agencies
have an average IT debt of more than $200 million, so dealing with IT
debt must be a priority for the coming decade. His call to action is to
collect reliable data about the scale of the problem.

At CAST Research Labs, our data repository of software structural
quality data—Appmarq—provides a unique foundation for quantifying
the scale of Technical Debt in businesses worldwide. In its current state,
Appmarq contains data on software size, complexity, and structural
quality from 75 IT organizations from around the world. There are 288
applications in the data set and each application is measured along 27
distinct attributes, resulting in a total of approximately 8,000 data points.
This white paper builds on the summary of results presented in the
CAST Worldwide Application Software Study–2010.

In this white paper we explain how Appmarq is used to monetize the
Technical Debt of an application. A fundamental element in the calculation
of Technical Debt is a “violation”. Violations, as we will explain in more
detail, are at the root of an application’s structural quality. Hence, our
monetization of Technical Debt is based on reliably collecting and quan-
tifying the root causes of the systemic risks in an application. Our results
show that even a conservative calculation of Technical Debt in the typical
business application tops $1 Million. There is substantial systemic risk
in applications but also a substantial opportunity for improvement.

We begin with a definition of Technical Debt and the result of our calculation
of Technical Debt in a typical application. We then present the details
behind this calculation – the fundamental elements in the calculation
and how they are put together to generate the result. We conclude with
recommendations for when Technical Debt should be measured and
the actions CIOs should take once Technical Debt is monetized.

http://www.castsoftware.com/resources/cast-research-labs�
http://www.castsoftware.com/resources/document/cast-research-labs/cast-worldwide-application-software-quality-study-2010?gad=techdebtwp�

How to Monetize Your Application Technical Debt
Page 4

Highlights

We define Technical Debt as the
cost of fixing the structural quality
problems in an application that, if
left unfixed, put the business at
serious risk.

II. The Definition of Technical Debt and How It’s Calculated

There are many ways to define and calculate Technical Debt, so let’s
begin with our definition and its merits. We define Technical Debt as
the cost of fixing the structural quality problems in an application that, if
left unfixed, put the business at serious risk. Technical Debt includes
only those application structural quality problems that are highly likely
to cause business disruption and hence put the business at risk; it does
not include all problems, just the serious ones.

Under this definition of Technical Debt, we find that a typical application
of 374,000 lines of code (KLOC) has more than $1 Million of Technical
Debt. Technical Debt does vary by application technology/language.
For hypotheses as to why and for more details, please see the CAST
Worldwide Application Software Study–2010.

Given our definition of Technical Debt, measuring it requires us to quantify
an application’s structural quality problems that put the business at risk.
This is where Appmarq comes in. Appmarq contains data on the structural
quality of business applications (as opposed to data on the process by
which these applications are built). Application structural quality measures
how well an application is designed and how well it is implemented (the
quality of the coding practices and the degree of compliance with the
best practices of software engineering that promote security, reliability,
and maintainability).

The basic measure of application structural quality in Appmarq is the
number of violations per thousands of lines of code (violations per KLOC).
Violations are instances when an application fails to accord with one or
more rules of software engineering. Violations can be grouped according
to their potential customer impact in terms of the business disruption
they create if left unresolved: the higher the level of business disruption,
the higher the severity of the violation. The most severe violations are
categorized as “critical violations.”

The number of violations per KLOC for each application is not obtained
from surveys of project/program managers; rather, it is measured using
the repeatable, automated CAST Application Intelligence Platform. Our
approach therefore rests on the foundation of objective, repeatably-
measured quantities. It is not susceptible to the subjectivity and
inconsistencies that undermine survey-driven data collection. Moreover,
the size of the data set is large enough to make robust estimates of the
number of low-, medium-, and high-severity violations per KLOC in the
universe of all business applications.

http://www.castsoftware.com/resources/document/cast-research-labs/cast-worldwide-application-software-quality-study-2010?gad=techdebtwp�
http://www.castsoftware.com/resources/document/cast-research-labs/cast-worldwide-application-software-quality-study-2010?gad=techdebtwp�

How to Monetize Your Application Technical Debt
Page 5

Highlights

We find that a typical application
of 374,000 lines of code (KLOC)
has more than $1 Million of
Technical Debt.

We have independently verified the strong correlation between violations
and business disruption events in a number of real-world field tests of
mission-critical systems. By focusing solely on violations, this calculation
of Technical Debt takes into account only the problems that we know will
cause business disruption. We also apply this conservative approach to
quantifying the cost and time it takes to fix violations (all assumptions
are stated clearly below).

In defining and calculating Technical Debt as we do, we err on the side
of a conservative estimate of the scale of Technical Debt. The actual
Technical Debt is likely to be higher and our aim is to simply set the
value for the floor – the lowest value it is likely to be. We think this is the
right direction to err when it comes to monetizing Technical Debt.

III. Four Steps for Calculating Technical Debt

Step 1. The density of violations per thousand lines of code (KLOC) is
derived from source code analysis using the CAST Application
Intelligence Platform.

Step 2. Violations are categorized into low, medium and high severity.
The Technical Debt calculation assumes that only 50% of high-severity
violations, 25% of medium-severity violations, and 10% of low-severity
violations require fixing to prevent business disruption.

Step 3. We conservatively assume that each violation, no matter its
level of severity, takes 1 hour to fix at a fully-burdened cost of $75 per
hour. Although these numbers could be a lot higher, especially when
the fix is applied during operation, we assume these values to produce
a conservative estimate.

Step 4. The formula for Technical Debt:

• L = Number of Low-Severity Violations per KLOC

• M = Number of Medium-Severity Violations per KLOC

• H = Number of High-Severity Violations per KLOC

• S = Average Application Size (KLOC)

• C = Cost to Fix a Violation ($ per Hour)

• T = Time to Fix a Violation (Number of Hours)

Technical Debt per Application = [(10% * L) + (20% * M) + (50% * H)] *
C * T * S

Using Appmarq data to arrive at the values for L, M, H, and S, the
amount of Technical Debt in a typical business application of 374
KLOC is over $1 Million.

http://www.castsoftware.com/products/cast-application-intelligence-platform�
http://www.castsoftware.com/products/cast-application-intelligence-platform�

How to Monetize Your Application Technical Debt
Page 6

Highlights

The monetization of Technical Debt
translates structural quality into
money, the universal language of
business. It enables apples-to-
apples comparisons that were not
possible before.

Once Technical Debt is monetized, what next? In the next section we
explain the steps that CIOs and Application delivery and maintenance
heads should take once they have measured and monetized the Technical
Debt of their business-critical applications.

IV. Setting a Technical Debt Threshold

Getting a handle on the systemic risk in an application begins with an
assessment of its Technical Debt. This measurement is a way to monetize
the quality of the application – it puts a dollar figure on the quality of an
application. This monetization is critical because it translates structural
quality into money, the universal language of business. It enables apples-
to-apples comparisons that were not possible before.

We all know that application quality is important. Being able to monetize
quality means we can now ask a further, critical question, namely, how
much quality is enough? Or to put it another way, how much should we
invest in this application to manage its systemic risk?

Figure 1 is a conceptual diagram that illustrates the tradeoff between
Technical Debt and business value. Please keep in mind that the diagram
is illustrative and uses no actual data.

Figure 1. Application Technical Debt and Business Value as a Function of Structural Quality Violations (Conceptual)

How to Monetize Your Application Technical Debt
Page 7

Highlights

Three use cases to get started
measuring Technical Debt are:
Periodic Count of Structural Quality
Violations; Acceptance Quality
Gate; and Industrialization of
Systemic Risk Reduction
Processes.

The increase in Technical Debt as the number of violations rise is shown
by the red line in Figure 1. The blue line shows the declining business
value as the number of violations rise. The point of intersection at which the
curves meet marks the maximum Technical Debt that can be tolerated
by the application. Anything to the right of that means a precipitous
drop in business value and a simultaneous rise in the cost to operate
the application.

The goal is to keep the number of structural quality violations well to the
left of the intersection of the curves. The range of acceptable values of
Technical Debt below the threshold can vary based on the exact nature
of the Technical Debt and the Business Value curves. This is indicated
by the gray shaded area. Moving left beyond the shaded area might be
too much of a good thing – there is a point beyond which improving
quality has diminishing marginal improvement in business value.

V. From Monetization to Action–Three Use Cases

We recommend that CIOs and heads of Applications use an automated
system to evaluate the structural quality of their three to five mission-
critical applications. As each of these applications is being built, measure
its structural quality at every major release. When the applications are in
operation, measure their structural quality every quarter.

In particular, keep a watchful eye on the violation count; monitor the
changes in the violation count and calculate the Technical Debt of the
application after each quality assessment. Once you have a dollar figure
on Technical Debt, use Figure 1 to determine how much Technical Debt
is too much and how much is acceptable based on the marginal return
on business value. For a framework for calculating the loss of business
value due to structural quality violations, please see, The Business
Value of Application Internal Quality by Dr. Bill Curtis.

Use Case 1: Periodic Count of Structural Quality Violations
While an application is being developed or being operated, establish an
automated process for periodically measuring the structural quality of
the application based on the number and the trend of structural quality
violations. Use this information to make the right tradeoffs between
delivery speed, application quality, and business value.

Use Case 2: Acceptance Quality Gate
Before you accept an application for production, measure its Technical
Debt against a pre-set threshold for acceptance. Use this objective
measure to clearly communicate your IT and business goals to your
internal teams and to your service providers.

http://www.castsoftware.com/resources/document/whitepapers/the-business-value-of-application-internal-quality?gad-techdebtwp�
http://www.castsoftware.com/resources/document/whitepapers/the-business-value-of-application-internal-quality?gad-techdebtwp�

How to Monetize Your Application Technical Debt
Page 8

Highlights

Once Technical Debt is measured,
you can juxtapose it with the
business value of applications to
inform critical tradeoffs between
delivery agility and business risk.

Use Case 3: Industrialization of Systemic Risk Reduction Processes
Integrate the practice of measuring Technical Debt into your delivery
model. Involve your developers, architects, QA, and DevOps to take
immediate actions to reduce Technical Debt rather than wait until it might
be too late (or too expensive). The cycle of measurement and structural
quality improvement improves team learning, performance, and morale.
Moreover, these improvements in the team’s productivity can be quantified
in terms of the same metrics that are used to measure structural quality.

VI. Conclusion

As Gartner analyst Andy Kyte recommends, the first step to getting a
handle on the systemic risks in your portfolio is to measure the scale of
Technical Debt in your applications. Measurement is the first step, but it
is an important step. To ensure objective, cost-effective measurement, use
an automated system to evaluate the structural quality of your business-
critical applications. Make sure that your assessment of Technical Debt
is grounded on a key driver of software structural quality.

The analysis in this white paper is grounded in objective counts of
violations which have been verified in numerous field tests to be the key
drivers of application costs and risks in organizations worldwide. The
power of this Technical Debt calculation is not in its mechanics (which
we have purposefully kept very simple) but in the fundamental bits of
data on which it is based. The independent confirmation that these
fundamental elements (structural quality lapses measured as number of
low-, medium-, and high-severity violations) play a significant role in the
business productivity of companies worldwide further strengthens the
objectivity and accuracy of the calculation.

Once Technical Debt is measured, juxtapose it with the business value
of applications to inform critical tradeoffs between delivery agility and
business risk. Set the appropriate threshold for Technical Debt and
monitor critical applications against this threshold to ensure that the
right balance between agility and business risk is maintained as IT and
business conditions evolve.

North America Europe
373 Park Avenue South 3, rue Marcel Allegot
New York, NY 10016 92190 Meudon - France
Phone: +1 212-871-3330 Phone: +33 1 46 90 21 00

www.castsoftware.com

© CAST All Rights Reserved

About CAST

CAST is a pioneer and world leader in Software Analysis and Measurement,
with unique technology resulting from more than $90 million in R&D
investment. CAST provides IT and business executives with precise
analytics and automated software measurement to transform application
development into a management discipline. More than 650 companies
across all industry sectors and geographies rely on CAST to prevent
business disruption while reducing hard IT costs. CAST is an integral part
of software delivery and maintenance at the world’s leading IT service
providers such as IBM and Capgemini.

Founded in 1990, CAST is listed in NYSE-Euronext (Euronext: CAS) and
services IT intensive enterprises worldwide with a network of offices in
North America, Europe, and India.

www.castsoftware.com

	How to Monetize Your Application Technical Debt
	A Data-Driven Approach to Balance Delivery Agility with Business Risk

	Executive Summary
	I. Introduction
	Contents
	II. The Definition of Technical Debt and How It’s Calculated
	Highlights
	We define Technical Debt as the cost of fixing the structural quality problems in an application that, if left unfixed, put the business at serious risk.

	Highlights
	We find that a typical application of 374,000 lines of code (KLOC) has more than $1 Million of Technical Debt.

	III. Four Steps for Calculating Technical Debt
	Highlights
	The monetization of Technical Debt translates structural quality into money, the universal language of business. It enables apples-to-apples comparisons that were not possible before.

	IV. Setting a Technical Debt Threshold
	Highlights
	Three use cases to get started measuring Technical Debt are: Periodic Count of Structural Quality Violations; Acceptance Quality Gate; and Industrialization of Systemic Risk Reduction Processes.
	Highlights

	V. From Monetization to Action–Three Use Cases
	VI. Conclusion
	About CAST

