
DeepDive

Copyright © 2017 InfoWorld Media Group. All rights reserved. • $129

T
H

IN
K

S
T

O
C

K

Angular
GET

STARTED
WITH

TUTORIAL

Deep Dive

InfoWorld.com DEEP DIVE SERIES 2PA A S

Deep Dive

2InfoWorld.com DEEP DIVE SERIES G E T STA R T E D W IT H A N G U L A R
T

H
IN

K
S

T
O

C
K

A step-by-step
guide to installing
the tools, creating
an application,
and getting up to
speed with Angular
components,
directives, services,
and routers
BY MARTIN HELLER

Angular

GET
STARTED
WITH

ANGULAR
TUTORIAL

Angular, the successor to AngularJS, is a devel-

opment platform for building mobile and desktop

applications using TypeScript and/or JavaScript and

other languages. Angular is popular for building

high-volume websites and it supports web, mobile

web, native mobile, and native desktop applications.

The Angular core development team is split

between Google employees and a robust community;

it’s not going away any time soon. In addition to its

own extensive capabilities, the Angular platform has

a strong external ecosystem: Several prominent IDEs

support Angular, it has four data libraries, there are

half a dozen useful tools and over a dozen sets of UI

components, and there are dozens of Angular books

and courses.

In 2015 when I awarded AngularJS a BOSSie,

I evxplained that it is a model-view-whatever (MVW)

JavaScript AJAX framework that extends HTML

with markup for dynamic views and two-way data

binding. Angular is especially good for developing

single-page web applications and linking HTML

forms to models and JavaScript controllers. The new

Angular is written in TypeScript rather than JavaScript,

which has many benefits, as I’ll explain.

http://www.infoworld.com/article/2982920/open-source-tools/bossie-awards-2015-the-best-open-source-application-development-tools.html?nsdr=true#slide4

InfoWorld.com DEEP DIVE SERIES 3

The weird-sounding “model-view-whatever” pattern

is an attempt to include the model-view-controller

(MVC), model-view-view-model (MVVM), and model-

view-presenter (MVP) patterns under one moniker. The

differences between these three closely related patterns

are the sorts of things that programmers love to argue

about fiercely; the Angular developers decided to opt

out of the discussion.

Basically, Angular automatically synchronizes data

from your UI (views in AngularJS and templates in Angular

2 and above) with your JavaScript objects (model) through

two-way data binding. To help you structure your applica-

tion better and make it easy to test, Angular teaches the

browser how to do dependency injection and inversion of

control. The new Angular (version 2 and above) replaces

views and controllers with components and adopts stan-

dard conventions, which makes it easier to understand,

and allows developers to concentrate on developing ECMAScript 6 modules and classes. In other words,

Angular 2 is a total rewrite of AngularJS that tries to implement the same ideas in a better way.

Angular view templates, which have a fairly simple syntax, are compiled into JavaScript that is well

optimized for modern JavaScript engines. The new component router in Angular 2 can do code-splitting

(lazy loading) to reduce the amount of code delivered to render a view.

Why Angular? And when is it not a good choice?
Choosing a JavaScript framework for a web app is the sort of process that sets off religious wars

among developers. I’m not here to proselytize Angular, but I do want you to know its advantages and

disadvantages. Ideally, you should pick the framework that’s appropriate for your app, taking into

account the skills in your organization and the frameworks you are using in other applications.

In general Angular has good tooling and is suit-

able for really large, high-traffic projects. Angular,

as a complete rewrite from AngularJS, was designed

from the ground up for use on mobile devices and

for high performance. Like its predecessor, it does

data binding easily and well.

Angular uses a web component pattern, but

not Web Components per se. It’s not Polymer,

which creates real Web Components, although

you can use Polymer Web Components in Angular

applications if you wish. Angular does use inver-

sion of control (IoC) and dependency injection (DI)

patterns, and fixes some problems with the AngularJS

implementation of these.

Angular uses directives and components that mix

logic with HTML markup. One school of thought says

that mixing logic with presentation is a cardinal sin.

Another school of thought says that having everything

a program does declared in one place makes it easier

to develop and understand. That’s an issue you’ll

have to decide for yourself, as I’ve found myself on

different sides of the question for different projects.

Deep Dive

G E T STA R T E D W IT H A N G U L A R InfoWorld.com DEEP DIVE SERIES 3

In general
Angular has
good tooling
and is suitable
for really large,
high-traffic
projects.

T
H

IN
K

S
T

O
C

K

Angular does have some documentation issues, frequent backward-compatibility problems,

and many concepts for a new developer to learn. On the other hand, Angular has a huge ecosystem

that fills the gaps in Angular’s documentation with third-party web tutorials, videos, and books.

About TypeScript
Angular is implemented in TypeScript, a duck-typed superset of JavaScript that transpiles to JavaScript.

In general, TypeScript applications are easier to maintain at production scale than JavaScript. The

simple process of determining whether your types are correct at compile time eliminates a large class

of common JavaScript errors, and knowing the types allows editors, tools, and IDEs to be more helpful

with code completion, refactoring, and code checking.

I happen to be a big fan of TypeScript. I find it to be much more productive to work on a large

TypeScript project than to work on a large JavaScript project. With JavaScript, I really never know

whether bugs are lurking in the code waiting to bite me, no matter how often I run JSHint. With

TypeScript, at least when I’ve added the optional types, classes, modules, and interfaces, I feel much

more secure.

Get started: Install Angular, TypeScript, and Visual Studio Code
With that said, let’s install the software and get started.

Install Node.js and NPM
Before we do anything else, we need to install Node.js and NPM, the Node package manager,

because they underlie much of Angular’s installation and tooling. To find out whether they are

installed, and if so, which versions are installed, go to a console or terminal prompt and type the

following two commands:

$ node -v
$ npm -v

On my machine, the Node.js version reported is v6.9.5

and the NPM version is 3.10.10.

Those are the current long-term-support versions at the

moment, as I can tell from looking at https://nodejs.org/.

If your versions are current, you can skip to the next section.

If either command is not found or either version is out of date, you

should install the current versions. My versions are current because I

recently reinstalled Node, as shown in the screenshot at left.

Installing both Node.js and NPM is a matter of browsing to

nodejs.org, pressing the green LTS button, and following the instruc-

tions. Once you’ve completed the installation, check the versions

again to make sure they really updated. I know repeating the check

sounds paranoid, but a good programmer needs a healthy dose of

paranoia to avoid bugs, and aborted installations aren’t uncommon.

1. Install Angular
There are two ways to install and use Angular. I’ll show you the

command-line interface (CLI) method first, for several reasons.

The first is that it fits better with the way I like to work. The

second is that the CLI generates a more complete starter applica-

tion than the QuickStart seed. The third is that the cleanup step

G E T STA R T E D W IT H A N G U L A R

Deep Dive

4InfoWorld.com DEEP DIVE SERIES

https://nodejs.org/en/
https://nodejs.org/en/

Deep Dive

InfoWorld.com DEEP DIVE SERIES 5G E T STA R T E D W IT H A N G U L A R

in the QuickStart seed instructions seems like it might wreak havoc if used at the wrong time or in the

wrong directory.

Browse to https://angular.io/ and click on one of the three “get started” buttons. They all go to the

same place, the Angular QuickStart:

Please read that page over, and feel free to try the QuickStart example on Plunker via the link after

the first code block. Once you think you can follow the @Component decorator function and the

Angular interpolation binding expression {{name}}, click on the CLI QuickStart link at the left.

Don’t worry too much about how the decorator function and interpolation binding are implemented:

We’ll get to that.

1a. Install and test Angular-CLI
We’re going to follow the instructions to set up the CLI development environment. The first step is to

install Angular and its CLI globally with npm:

$ npm install -g @angular/cli

If you watch carefully as the installation proceeds, you’ll see a bunch of prerequisites and tools

installed before Angular and its CLI. If there are warnings, don’t worry about them. If there are errors,

you may have to fix them; I’ve only seen warnings myself. It is safe to reinstall the Angular CLI when-

ever you wish.

https://angular.io

Deep Dive

InfoWorld.com DEEP DIVE SERIES 6G E T STA R T E D W IT H A N G U L A R

The next step is to create a new project with the Angular CLI. I put mine inside a directory called

Work under my home user folder.

$ cd work
$ ng new my-app

As the instructions note, generating the new Angular app takes a few minutes. This is a good time

to go brew a nice cup of tea or coffee.

You’ll see in the screenshot that I double-checked my TypeScript version (tsc -v) after the

Angular CLI installation. Yes, it was a little paranoid. And yes, it’s a good idea for you to do as well. If

you have not installed TypeScript already, let’s take care of that now:

$ npm install –g typescript

We’re almost there. Next, step into the new directory and serve the application.

$ cd my-app
$ ng serve

As the
instructions
note, gener-
ating the new
Angular app
takes a few
minutes.
This is a good
time to go
brew a nice
cup of tea or
coffee.

Deep Dive

InfoWorld.com DEEP DIVE SERIES 7PA A S

Deep Dive

InfoWorld.com DEEP DIVE SERIES 7G E T STA R T E D W IT H A N G U L A R

As the server will tell you, it’s listening on port 4200. So open a browser tab to

http://localhost:4200/ and you’ll see:

The balance of the CLI QuickStart page instructs you to change the title property and its CSS.

Feel free to do that with whatever programming editor (not a word processor!) you happen to have

installed, or wait until we install Visual Studio Code later. The browser window will update automati-

cally whenever you save, as the server watches the code and updates on changes.

When you’re done with the server, press Control-C in the terminal window to kill the process.

1b. Install the Angular QuickStart seed
Only do this step if you have skipped step 1a. If you do both steps, this installation will clobber part of

the CLI installation, and you’ll have to redo that if you want to use it again.

The instructions for installing the QuickStart seed offer two options to start the process:

downloading the seed and unzipping it, or alternatively cloning the seed, as follows:

$ git clone https://github.com/angular/quickstart.git quickstart

Whichever option you choose for getting the code, the next steps are the same:

$ cd quickstart (or whatever you named the folder)

$ npm install
$ npm start

The npm install step does essentially the same thing as the $ npm install -g @angular/cli
step in the CLI version of the installation, except that it does install TypeScript and it does not install

the Angular CLI, since that isn’t on the dependency list in package.json. In fact if the Angular CLI is

already installed, this script will uninstall it.

The npm start step runs this script:

“start”: “concurrently \”npm run build:watch\” \”npm run serve\””

To expand that, the build:watch and serve scripts are:

 “build:watch”: “tsc -p src/ -w” and

 “serve”: “lite-server -c=bs-config.json”

Have I mentioned that tsc is the TypeScript compiler? The -p option sets the project directory to

compile, and the -w option says to watch input files.

The npm start step (running the two scripts concurrently) will do essentially the same thing as the

ng serve step in the CLI version of the installation, except that it is likely to choose a different port, plus

it will automatically load the page it is serving in your default browser, and the page will look like this:

https://github.com/angular/quickstart/archive/master.zip

Deep Dive

8InfoWorld.com DEEP DIVE SERIES G E T STA R T E D W IT H A N G U L A R

When you’re finished playing with

your Angular QuickStart app, just hit

Ctrl+C or close the terminal window

to kill the process. You can start it up

again by returning to the directory and

running ng serve.

The next (optional) step in the

QuikStart seed instructions is the one

that makes me nervous: It tells you to

delete the non-essential files using rm -rf on MacOS or del on Windows. If you decide to do that,

at least double-check that you’re in the correct directory before firing off the script you copied from

the documentation site. Please don’t try it after you’ve started to add files to the project.

No matter whether you followed the CLI or QuickStart seed instructions, your next step will be to

explore the source code of an Angular project. To that end, let’s install an Angular-aware editor.

2. Install Visual Studio Code
The Angular resources page recommends three IDEs: IntelliJ IDEA, Visual Studio Code, and WebStorm.

I use all three, but for the purposes of this exercise Visual Studio Code is the best choice because it’s

free and open source. Browse to the Visual Studio Code home page and download the current stable

version for your platform, then install the package.

Once Visual Studio Code is installed, run it and open the directory that holds your base project. On

my Mac, the CLI-generated project is at ~/work/my-app and the seed is at ~/work/quickstart-
master. Your location will vary depending on whether you did the CLI install or the seed install, and

any choices you made about their target directories. The source tree should look something like this:

https://angular.io/resources/
http://code.visualstudio.com

Deep Dive

9G E T STA R T E D W IT H A N G U L A R

Visual Studio Code supports TypeScript out of the box, so there’s nothing else to install. If you wish

to install other languages later, it’s easy to do so in the Extensions panel, easily shown by clicking on the

bottom icon at the top left. Type the name of the language or tool you want into the search box at the

top of the Extensions panel. You can get back to the file explorer by clicking the top icon at the top left.

Note that Visual Studio Code installs a private copy of TypeScript for itself, while Angular installs a

global copy of TypeScript. These aren’t always the same version, but it shouldn’t matter. If Visual Studio

Code starts bleating about this, you can click on the button that essentially says “Don’t bother me

about this again” and it’ll change its options. If you want the version check reinstated at any time,

go to Code > Preferences > Settings and change the value next to “typescript.check.tscVersion”

from false to true.

Explore the Angular source code
Now that we finally have a working Angular “Hello” project open in an editor, we can start exploring

the source code. Actually, let’s go back to the documentation first and look at the setup guide to see

the explanations. There are boxes about halfway down the page, which show the three Angular core

source files:

InfoWorld.com DEEP DIVE SERIES

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 0G E T STA R T E D W IT H A N G U L A R

We’ve seen app.component.ts before, in the online QuickStart. As the page says, “it is the root

component of what will become a tree of nested components as the application evolves.” The next file

over, app.module.ts, defines “the root module that tells Angular how to assemble the application.

Right now it declares only the AppComponent. Soon there will be more components to declare.”

The third file, main.ts, is deceptively simple.

platformBrowserDynamic is the Angular JIT compiler, and bootstrapModule is the func-

tion that kicks off the app. Yes, Angular has its own just-in-time compiler, which knows how to turn

Angular directives into executable JavaScript. Let’s not get into Angular’s other compilers at this point.

I told you earlier not to worry about how the decorator function and interpolation binding are imple-

mented. Now you know: Angular supplies its own compilers that turn all the declarations into code.

If you go back to Visual Studio Code and open src/main.ts, you’ll find essentially the same

contents (modulo whitespace) if you used the QuickStart seed. You’ll find a longer, more complicated

version of the bootstrap file if you generated the app from the Angular CLI, which hints at the different

compilers and environments available for Angular:

What’s going on here? We see an environment with a variable called production,

and a setter function called enableProdMode. There’s an explanation in the source code

found in environment/environments.ts in the CLI-generated app:

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 1

More seriously,
the problem
with Angular
is not the archi-
tecture itself,
but rather
that the termi-
nology is over-
loaded with
JavaScript and
TypeScript
terminology.

Angular architecture
As I planned this tutorial, I considered sending you to the official Angular architecture documentation

to learn what they had to say about their own architecture; however, I didn’t want any damage to your

mental health on my conscience. You’re free to go look at that, but you may want a stiff drink first.

More seriously, the problem with Angular is not the architecture itself, but rather that the termi-

nology is overloaded with JavaScript and TypeScript terminology. JavaScript (more accurately CommonJS

and TypeScript) and Angular both have modules, but they are different. JavaScript and Angular both

have libraries, but again they are different. Both have imports and exports, and, as you’ve probably

guessed, they are different. Have you reached for the bottle yet? How about the headache pills?

Angular, as I mentioned above, adds decorators, directives, and components to JavaScript and

TypeScript. Since none of these are native facilities, Angular has its own compiler to turn them into

JavaScript, which you launch, and then have the compiler bootstrap your app. Meanwhile, TypeScript

also has a compiler, more accurately a transpiler, which generates JavaScript.

OK. Take a deep breath. Let’s look at the Angular architecture diagram.

 What are we seeing here? Basically, the diagram shows the relationships between some of the

major building blocks of Angular: modules, components, templates, metadata, data binding, directives,

services, and dependency injection. There are additional optional building blocks in Angular, such as

the router module.

For this tutorial, I’m going to concentrate on the four building blocks that you’ll need on a daily

basis: components, directives, services, and routers. If you feel the need to understand Angular

modules right this minute, by all means go read the documentation and then come back. If not, stay

with me.

Components
Let’s look again at app.components.ts, which is the root component of an Angular app. For a

generated seed app, it’s the only component.

G E T STA R T E D W IT H A N G U L A R

https://angular.io/docs/ts/latest/guide/architecture.html
https://angular.io/docs/ts/latest/guide/architecture.html

If you’re trying to create an app that uses protocols other than HTTP, Tornado has you covered.

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 2G E T STA R T E D W IT H A N G U L A R

There are several ways to think about Angular components. One is that they are TypeScript classes,

as seen at line 8 above. Note that classes are exported in TypeScript. Since by convention Angular

components are in separate files, TypeScript needs to know that you intend them to be visible to other

components.

No other component actually needs to import the base class, but we export it anyway as a matter

of consistency.

export class AppComponent {
 title = ‘app works!’;
}

Another way to think about components is that they each control a patch of screen called a view,

which starts to make sense when an app has many components for specialized views, such as a top

bar, a side navigation bar, a side toolbar, and a tabbed detail view. All of those view components

together could describe Visual Studio Code if it were an Angular app. (It’s not.)

A third way to look at Angular view components is as the container for all the metadata that ties

the view together, expressed as a @Component directive. The root component shown above defines

three metadata properties:

 selector: ‘app-root’,
 templateUrl: ‘./app.component.html’,
 styleUrls: [‘./app.component.css’]

Deep Dive

G E T STA R T E D W IT H A N G U L A R

The selector defines the mapping from an Angular view to the DOM (Document Object Model),

and says to display the view inside the (custom) <app-root> tag in index.html:

<body>
 <app-root>Loading...</app-root>
</body>

In Angular you don’t mess with HTML selectors from your code, as you would in jQuery. Instead you set

properties and values in the component class. The data binding automatically reflects them to the DOM.

The templateUrl property defines the name and location of the Angular template file for the

view. The template combines HTML markup with Angular template syntax, as shown by the HTML tags

and the handlebar notation below:

<h1>
 {{title}}
</h1>

As you have probably guessed, this template says to display the AppComponent class title

property as a level-1 head. We saw “app works!” in a basic H1 style when we ran the app earlier.

This could also have been done with an embedded template property and string; separating the

template out into its own file using the templateURL property helps with maintainability and is

more convenient for templates of non-trivial size. (I was going to say rodents — I mean templates — of

unusual size, but in fact Angular templates are usually bigger than you’d want to stuff onto one line.)

The styleUrls property holds an array of CSS file names and locations to define the styles that

apply to the view. It needs to be an array because CSS styles are hierarchical. As it happens, the default

app.component.css file in a generated seed app is empty, which is why we saw a basic H1 style

and not something better styled. Later in the Angular CLI quick start tutorial, you change the title text

and set the CSS to:

h1 {
 color: #369;
 font-family: Arial, Helvetica, sans-serif;
 font-size: 250%;
}

That gives you the same look as the

seed project, which also has title text of

“Hello Angular.”

Directives
The Angular @Component we’ve been discussing is a special kind of directive. Angular renders

templates according to the instructions given by directives, and dynamically transforms the DOM.

There are two other kinds of directives besides components: structural and attribute directives.

Structural directives alter layout by adding, removing, and replacing elements in the DOM. Attribute

directives alter the appearance or behavior of an existing element. In templates they look like regular

HTML attributes, hence the name.

Let’s look at some examples from the Angular documentation. The first example, from the Hero List

template, includes two built-in structural directives.

1 3InfoWorld.com DEEP DIVE SERIES

https://www.youtube.com/watch?v=Nv9CkjkOyzo
https://www.youtube.com/watch?v=Nv9CkjkOyzo

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 4G E T STA R T E D W IT H A N G U L A R

<li *ngFor=”let hero of heroes”>
…
<hero-detail *ngIf=”selectedHero”></hero-detail>

The top example, *ngFor written inside list tags, generates one list item for every hero in the

heroes list. This is a very concise, expressive way to create a list based on data; Angular’s JIT compiler

turns it into efficient JavaScript and HTML.

The second example, *ngIf written inside a custom hero-detail tag, only displays a

hero-detail record if one has been selected from the heroes list and the selected detail record

exists. Together with the *ngFor directive, this efficiently implements a master-detail application.

For the full context, consider the entire Hero List template:

<h2>Hero List</h2>
<p><i>Pick a hero from the list</i></p>

 <li *ngFor=”let hero of heroes” (click)=”selectHero(hero)”>
 {{hero.name}}

<hero-detail *ngIf=”selectedHero” [hero]=”selectedHero”></hero-detail>

The ngModel directive, which implements two-way data binding, is an example of an attribute

directive. ngModel modifies the behavior of an existing element (typically an <input> tag) by setting

its display value property and responding to change events. Here’s how the hero-detail component

uses ngModel to handle changes:

<input [(ngModel)]=”hero.name”>

The magic here is that Angular not only sets the initial value of the input field, it takes care of

updating the model in response to change events, without making you write event handler code.

Much of the routine work in developing Angular applications involves writing custom components.

You can also write custom structural and attribute directives when and if you need them.

Services
When I discussed the Hero List above, I glossed over how the component gets its list of heroes. In fact,

it uses a service provider that implements that functionality. Sure, the component could technically

implement everything itself, but the preferred style for Angular applications is to keep components

focused on the view and the model, with all the back-end work consumed as services.

Service is a broad category in Angular that includes any value, function, or feature that your appli-

cation needs. The HeroService is an exported class that maintains an internal list of heroes, which it

gets from a BackendService that implements a getAll method:

export class HeroService {
 private heroes: Hero[] = [];

 constructor(
 private backend: BackendService,
 private logger: Logger) { }

tv

 getHeroes() {
 this.backend.getAll(Hero).then((heroes: Hero[]) => {
 this.logger.log(‘Fetched ${heroes.length} heroes.’);
 this.heroes.push(...heroes); // fill cache
 });
 return this.heroes;
 }
}

How does the HeroService know how to use the BackendService and the Logger?

In the root module, preferentially, these and any other services are listed as providers:

providers: [
 BackendService,
 HeroService,
 Logger
],

You can also register a service at the component level in the providers property of the

@Component metadata:

@Component({
 moduleId: module.id,
 selector: ‘hero-list’,
 templateUrl: ‘./hero-list.component.html’,
 providers: [HeroService]
})

The preference for registering services in the root module is driven by wanting all components

to use the same instance of the services. You might want to register a service at the component level

to keep all the pieces of the component together, for modularity, or to give each instance of the

component its own instance of a service.

A component lists the services it needs in its constructor:

constructor(private service: HeroService) { }

When Angular creates a component, it first asks an injector for the services that the component

requires. The injector keeps all its service instances in a container. At component instantiation time,

Angular calls the injector, gets the service instances, and then calls the component’s constructor with

the instances as arguments. That, in a nutshell, is dependency injection, which is one way to accom-

plish inversion of control.

Routers
I mentioned earlier that Angular applications usually contain multiple view components. Once you

have more than one view, you need a way to navigate from one view to another. For that Angular has

routers, implemented in an external, optional Angular NgModule called RouterModule. The router

is a combination of multiple provided services (RouterModule), multiple directives (RouterOutlet,
RouterLink, RouterLinkActive), and a configuration (Routes).

Why not just switch from view to view using HTML links? The basic reason is that links cause a

Deep Dive

G E T STA R T E D W IT H A N G U L A R 1 5InfoWorld.com DEEP DIVE SERIES

http://cache3.asset-cache.net/xc/164922493.jpg?v=2&c=IWSAsset&k=2&d=l1Y6yPiWoyDaYARkqWLI-8gumXc-
8Q8r02Qz-SOfZDBwV0VsFTVZJHMBa44kpUUU_0

new page to load, and Angular by preference creates single-page applications (SPAs), which appear

smoother to the user.

Routing in a single-page app, whether it’s an application based on Angular or another technology

such as Ruby on Rails, can get complicated fairly quickly. We want to preserve the idea of a mapping

between a URL and an application state without incurring the time overhead of a complete page

reload after every HTTP request.

In Angular, that requires a number of conditions to be met. First, the base HREF must be set explicitly:

<head>
 <base href=”/”>

Next, we need to map routes between paths and components:

import { RouterModule } from ‘@angular/router’;
RouterModule.forRoot([
 {
 path: ‘heroes’,
 component: HeroesComponent
 }
])

There’s only one path here now, but there will be more.

Third, we need to add that to the AppModule imports array. Fourth, we need to set router links

and outlets, to emulate what happens with an HTML link:

template: ‘
 <h1>{{title}}</h1>
 Heroes
 <router-outlet></router-outlet>
 ‘

Finally, we want to redirect the null path to our link:

{
 path: ‘’,
 redirectTo: ‘/heroes’,
 pathMatch: ‘full’
},

If you follow the full Tour of Heroes tutorial, you’ll see that it adds a dashboard view and sets the

redirectTo to point to /dashboard, which causes the routing to actually make sense. In fact, at this

point, I think that following the full tutorial is exactly the right thing to do. You are ready to take it on.

Have fun! n

Martin Heller is a contributing editor and reviewer for InfoWorld. Formerly a web and Windows

programming consultant, he developed databases, software, and websites from his office in Andover,

Massachusetts, from 1986 to 2010. More recently, he has served as VP of technology and education at

Alpha Software and chairman and CEO at Tubifi.

Deep Dive

InfoWorld.com DEEP DIVE SERIES 1 6G E T STA R T E D W IT H A N G U L A R

https://angular.io/docs/ts/latest/tutorial/

